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Abstract
Network traffic prediction is an important tool for the South
African Research and Education Network (SANREN) in man-
aging network congestion, resources and security. It predicts
future network traffic flows based on previous data, using
either statistical time-series or machine learning approaches.
Efficient prediction can improve the quality of service and
lower operating costs for network service providers. Existing
literature shows that deep learning models learn network
traffic patterns more efficiently and predict future traffic
more accurately than traditional prediction models. Three
different Long Short Term Memory (LSTM) models were de-
veloped for the SANREN: Bidirectional, Simple and Stacked.
These models were evaluated both in terms of their predic-
tion accuracy, and their computational complexity. Dataset
size and prediction accuracy have a strong correlation, at
the cost of increasing training time as more data are added.
The results demonstrated that a Stacked LSTM was the most
accurate prediction model, at the expense of using the most
computational resources. Using a Simple LSTM greatly saved
on computational resources, and was only slightly less accu-
rate at predicting future traffic on the SANREN compared to
a Stacked LSTM.

CCS Concepts: • Computing methodologies → Unsu-
pervised learning; Neural networks; • Networks →
Network performance analysis.

Keywords: Long-Short Term Memory, Mean Squared Error,
Mean Absolute Error, Network Traffic Prediction, Stacked
Long-Short Term Memory, Bidirectional Long-Short Term
Memory, Computational Complexity

1 Introduction
In today’s world, the internet and its applications have be-
come a vital tool for all types of users. As COVID-19 has
caused a significant surge in internet traffic [5], networks
such as the SANREN are having to manage their limited
bandwidth more effectively. Accurate network traffic predic-
tion - provided by models that predict future traffic flows and
fluctuation - would help the SANREN to alleviate congestion
and load management issues. Predicting network traffic in
the short term aids in dynamic resource allocation, while
longer-term prediction provides insight into how a service
provider may improve their network capacity and perfor-
mance [17]. Deep learning models have become a popular

approach to time series forecasting, which includes network
traffic data. An analysis of existing literature shows deep
learning models consistently outperform traditional statisti-
cal and machine learning methods, and that Long Short Term
Memory models are now the gold standards for network traf-
fic prediction. [13, 14, 16, 18, 20]. There has not been enough
research done into using deep learning for short term net-
work traffic prediction, and limited computational resources
have also not been extensively considered.

SANREN is an organised network of education and re-
search institutions within South Africa [3]. Within the net-
work, there are time-series traffic data flows that can be too
large to be adequately monitored by traditional data analysis
techniques. Hence, a deep learning approach is proposed as
an alternative method to perform network traffic analysis
and prediction for SANREN. The objective of this paper is to
critically evaluate deep learning approaches to determine the
best model for network traffic prediction on the SANREN.
Therefore, this paper also investigates the computational
resources required for each LSTM implementation and con-
cludes on the trade-offs between computation time, dataset
size and prediction accuracy - specifically when considered
for the SANREN use case, in order to more accurately pre-
dict future network traffic compared to current statistical
methods used. Additionally, the SANREN needs to be able to
determine how traffic flow on the network varies with the
South African University Calendar.

1.1 Project Aims and Research Questions
The main aim of this project is to develop three LSTM mod-
els to test whether it is possible to accurately predict future
network traffic on the SANREN, and to determine the com-
putational complexity associated with training and making
predictions using these models. Three research questions are
also to be answered:

• How does the SANReN traffic data vary with time
and day in relation to the South African university
calendar?

• What is the computational cost of different LSTM ar-
chitectures, given a required level of accuracy in pre-
dicting future traffic flows on the SANREN?



• Which of the LSTM models, Bidirectional, Simple or
Stacked, provides the highest accuracy when predict-
ing future SANREN traffic data, subject to network
constraints?

Successful completion of this project will be achieved by
answering these research questions, through the develop-
ment and testing of the LSTM models, and the discussion
generated from the experimental results obtained.

1.2 Need for Network Traffic Prediction
It is important to consider the constraints and resources of
a network when evaluating a candidate model for network
traffic prediction. Both computational complexity and run
time can be a limiting factor for less-resourced networks
such as SANREN, which may result in a trade off between
accuracy and computational resources required to train the
models arising. Existing literature on time series prediction
has shown that LSTM derivative models, such as the Stacked
and Bidirectional LSTM, have out-performed Simple LSTM
models [6, 16].

The feasibility of LSTM and LSTM-derivative models to
predict network traffic on the SANREN will be investigated.
This project is a departure from previous work done in the
field, since this is specifically geared towards creating an
optimal model for predicting traffic on the SANREN.

1.3 Structure of Report
The paper begins with a brief overview of the South African
Research and Education Network, which is the network on
which this project is based. Following this, the paper will
discuss Deep Learning and LSTMs in detail and the previous
work that has been done in network traffic prediction. Ex-
periment design and results will come next. Closing off, the
key findings and limitations of the project will be visited, as
well as future work that can be conducted and limitations
faced during the project.

While the overall objective of the research paper is to an-
swer the research questions set out above, this paper will
focus more on the LSTM architectures and their implementa-
tions, and discuss why certain results were observed. There
will be a brief overview of the preprocessing and data analy-
sis stages, but this will not be the main focus of this paper.

2 Background on Deep Learning and
Related Work

Network traffic prediction approaches have been investi-
gated in a multitude of past studies. Furthermore, the growth
of the internet has accelerated research, with deep learning
techniques emerging as the prevalent means for network
traffic prediction. Historically, researchers used statistical
prediction techniques such as ARIMA andHolt-Winters mod-
els, but deep learning models - particularly the LSTM - have

shown to out-perform those in their prediction accuracy. A
Recurrent Neural Network can suffer from the vanishing gra-
dient problem [4], which occurs when the network is unable
to send back useful gradient information from the output
layers to those layers that are more shallow. If this occurs,
the RNN loses its ability to consider long term dependencies
in calculations. It is for this reason that Krishnaswamy et al.
[16] propose that using an RNN is unsuitable for network
traffic prediction.

An LSTM is a type of RNN, which is formed by adding
a short and long term memory unit to an RNN [11]. The
addition of memory units allows the network to deal with
the correlation of time series in the short and long term,
and store dependencies that it deems important from earlier
epochs of training [21]. Krishnaswamy et al. [16] suggest
that an LSTM should be used for time-series predictions, to
eliminate the vanishing gradient problem.

2.1 Long Short Term Memory
LSTMs have cells in the hidden layers of the neural network,
which have three gates: input, an output, and a forget gate
[8]. These gates control the flow of information which is
needed to predict the output in the network. The gates that
are added to an LSTM cell allow LSTMs to learn long term
dependencies, since they are able to retain information from
multiple previous time-steps [11].

Figure 1. An example of a LSTM Cell and its gates. Input
is received from the previous cell and passes through the
forget gates, where values deemed unimportant are dropped.
Eventually new values are sent to the next cell through the
output gate [12].

The sigmoid function, outputs a value between 0 < 𝑥 < 1.
It is used in the forget gate, in order to decide what infor-
mation from the previous time step should be retained and
what should be discarded in the next cell state. A value of 0
means that no information will pass through to the next cell,
while 1 means that all information is passed through. The
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tanh function, outputs a value between -1 < x < 1. It forms
the input gate, and receives information from the forget gate.
When the input gate receives information from the previous
time step 𝐶𝑡−1, it then determines whether the input will
contribute to the cell state.

𝑔𝑡 = 𝜎 (𝑊 (ℎ𝑡−1, 𝑋𝑡 ) + 𝑏𝑖 (1)

𝐶𝑡 = 𝑡𝑎𝑛ℎ(𝑊 (ℎ𝑡−1, 𝑋𝑡 ) + 𝑏𝐶 (2)

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡 ) (3)

𝑔𝑡 indicates whether the information will pass to through
to the output gate, while 𝐶𝑡 calculates the value of the new
cell state. Lastly, the result of the output from the cell unit
is calculated. ℎ𝑡 represents the cell output, and is calculated
by multiplying the current cell state (𝐶𝑡 ) by the important
features from the input (𝑜𝑡 ) [7].

2.1.1 Bidirectional. ABidirectional LSTM runs input from
both past to future, and future to past. This approach pre-
serves information from the future and, using two hidden
states combined, it is is able in any point in time to preserve
information [19]. Cui et al. [6] investigated the use of a Bidi-
rectional LSTM for forecasting network traffic. They also
found that a Stacked + Bidirectional LSTM achieved a more
accurate prediction than a basic Bidirectional LSTM. Impor-
tantly, the training times that they observed indicate that a
Stacked Bidirectional LSTM has nearly double the training
time of a regular LSTM.

2.1.2 Stacked. A Stacked LSTM puts multiple LSTM cells
on top of each other, which forms multiple LSTM layers [7].
These layers provide a sequence of outputs to the next layer,
rather than a single value. Krishnaswamy et al. [16] discussed
the differences between using a Simple and Stacked LSTM
learning approach for network traffic prediction. Stacked
LSTM’s were more accurate in predicting future traffic flows
compared to the Simple LSTM architecture. This comes at
the cost of a higher computational complexity, as a result
of added LSTM layers that the Simple LSTM does not have.
There is a a trade off here, but the choice between accuracy
and computational efficiency allows network operators to
decide what is more practical for their needs. Krishnaswamy
et al. [16] noted that adding extra LSTM layers did not cause
a noticeable change in accuracy. The Simple LSTM had the
lowest Mean Squared Error overall. One limitation that is
investigated further in this project is whether these LSTM
algorithms perform aswell for smaller traffic volumes such as
those on SANREN, compared to the traffic links that process
over 100GB/s.

3 Experiment Design and Execution
3.1 Test Bench
The code was developed and tested on a 2016 MacBook Pro
with the following specifications:

• 8GB of 1866MHz LPDDR3 RAM
• Intel I5-6360U 2.0GHz
• Intel Iris Graphics 540

3.2 Obtaining SANREN Data
The SANREN data was extracted from the SANREN server in
a pcap file format. In order to make the data easily accessible
for our research purposes, it was converted into a text-file.
Traffic flows from 5 consecutive days (5 - 10 July 2020) were
extracted. Having multiple days of data allows for the com-
parison of how traffic flow changes based on day, and may
impact on the training and prediction of models if the data is
correlated. Additionally, it follows our hypothesis that more
data would lead to an increase in prediction accuracy.

3.3 Preprocessing
The format of the data that was extracted was not suitable to
be used without preprocessing. Some columns had null val-
ues, and different suffixes attached whichmade them difficult
to read into the program. Additionally, there were summaries
of traffic flows extracted that needed to be removed.

3.3.1 Feature Extraction and Transformation. In or-
der to standardise the data, all traffic flows were converted
into bytes to create a single unit of measurement. Week
and weekend days were converted into a binary variable
(week days corresponding to 0, weekend to 1), in order to
be processed in the LSTM models. Other variables, such as
flags, flows and Tos were dropped. The remaining variables,
source and destination IP addresses were formatted to make
them suitable for use in an LSTM model. The South African
University calendar for 2020 was added as well, in order to
visualise the change in network traffic over this period.

3.3.2 Datasets. The data was split using an 80:20 ratio.
80% of the data for the training set, and 20% for the testing
set. Of the 80% used for the training set, another 80:20 split
was applied. 80% of the split remained as a training set, while
the other 20% was used to create a validation set [9]. Using
less training data would mean that the parameter estimates
would have higher variance, while less test data means that
performance metrics would have higher variance. The final
predictions will be made on the test dataset once the models
have been trained.

A validation set forms an important part of ensuring that
the models do not suffer from over fitting, as it shows how
well the model is generalizing during training. These data
are separate from the training set, and should have the same
distribution as the training set. While the model will train3



on the data from the training set, it will be evaluated on the
predictions it makes using validation set in order to help fine
tune the hyperparamters. The model does does not update
weights based on errors it encounters during the validation
process, only those encountered on the training set.

3.4 Evaluating Performance of LSTM Models
The LSTM models were evaluated during and after training.
During training, the training and validation losses were mea-
sured. When predicting future traffic flows, they were then
assessed on their prediction accuracy. Both accuracy and
computational resources required were assessed, in order to
answer the research questions.

During training, the training and validation loss metric for
each LSTM was specified to be Mean Squared Error (MSE).
𝑀𝑆𝐸 as well as 𝑅2 were used to evaluate the final predictions
the LSTMs generated on the SANREN test data.

3.4.1 PredictionMetrics. Mean Squared Error (MSE),Mean
Absolute Error (MAE) and the Coefficient of Determination
were the measurements used to evaluate the predictive accu-
racy of the model.

𝑀𝑆𝐸 is ameasurement of how close themodels predictions
are to the actual values, and is an ordinal value which allows
the prediction accuracy of the different LSTM models to be
compared.

𝑀𝑆𝐸 = ( 1
𝑛
)

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑥𝑖 )2 (4)

Equation 4 shows that the test𝑀𝑆𝐸 is an average of the
errors observed when the LSTM makes predictions on un-
seen data.

𝑀𝐴𝐸 measures the average magnitude of each prediction
error for all predictions in the test set. It is more robust to
outliers than𝑀𝑆𝐸, since it does not punish large errors by
squaring them.

𝑀𝐴𝐸 = ( 1
𝑛
)

𝑛∑
𝑖=1

|𝑦𝑖 − 𝑥𝑖 | (5)

Equation 5 shows that the test𝑀𝐴𝐸 is the average of the
absolute errors observed when the LSTM makes predictions
on unseen data.

Both𝑀𝐴𝐸 and𝑀𝑆𝐸 are ordinal values, and therefore can-
not provide meaningful information on their own [1]. Rather,
the training or test metrics need to be compared with the
metrics produced by the other LSTM models. A low vali-
dation 𝑀𝐴𝐸 and 𝑀𝑆𝐸 would indicate that the model has
generalised well to the data, while a low test𝑀𝐴𝐸 and𝑀𝑆𝐸

would indicate that the model made accurate predictions.

𝑅2 = 1 − 𝑅𝑆𝑆/𝑇𝑆𝑆 (6)
𝑅2, the Coefficient of Determination is a metric which

measures the proportion of the variation in the dependent
variable that is predictable from the independent variables
[2]. In this case, it measures how well the model captures
variation in the data. The closer the 𝑅2 value is to 1 the
better, since a value of 1 implies the model has fitted the data
perfectly. 𝑅𝑆𝑆 refers to the Residual Sum of Squares which is
the sum of the errors squared, while 𝑇𝑆𝑆 refers to the Total
Sum of Squares which is the sum of the squared differences
between actual and average value of 𝑦.

3.4.2 Computational EfficiencyMetrics. For a problem
such as network traffic prediction, being able to quickly pre-
dict future traffic flows can be important, especially in the
short term to aid dynamic resource allocation. In order to
track how long each LSTM takes to train and make pre-
dictions, the Python time module was used. The number
of seconds each model took to train with different hyper-
paramters was then easily comparable. A long training time
can be a hindrance for the SANREN, especially if they want
to make short term predictions and have a limited time frame
and resources.

3.5 Overview of Experiment Design
Once the data has been pre-processed, it is ready to be used
within a LSTM. The Bidirectional, Simple and Stacked LSTM
models were all developed in Python. These were built with
Keras API, which is an implementation of TensorFlow. This
choice was made based on the ease of use and development
of building deep learning models with these libraries. Once
the models have been specified and compiled, they are then
fitted to the data in the training stage. A graph showing
the training and validation loss during training is shown for
each LSTM, which allowed to see where the validation loss
reached a minimum. Once the lowest validation loss had
been found, the hyperparamters of that LSTM were noted.
This LSTM is then used to make predictions on the unseen
SANREN test set. Their predictions against expected values
are plotted in order to visualise their accuracy. During both
training and testing, accuracy and computational resource
metrics are also calculated in order to compare the different
models and are then written to an external file. Post training
and testing, the results are analysed and plots are generated
in order to visually compare performance of the LSTMs.

3.5.1 Implementation of LSTMs. Previouswork discussed
in Section 2 suggests that of the models that are investigated
in this paper, the Stacked LSTM is the most accurate predic-
tor of future network traffic. This however comes at the cost
of having the highest computational complexity as well. We
therefore expect the findings of this paper to be reflective of
the previous work discussed. Our two results, computational
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complexity and prediction accuracy will allow for a network
service provider to decide what LSTM model is more suited
to their needs. Therefore, the impact of the product will fall
primarily on National Research and Education Networks
(NRENs). If the LSTM models developed are found to be
an accurate means of predicting future network traffic, and
are computationally viable for the SANREN use case, then
NRENs will be able to implement LSTMs as network network
traffic predictors in order to manage network load, security
and resource use. Additionally, if LSTMs are found to be suffi-
ciently computationally cheap, then the application of them
as a network traffic predictor could be applied to additional
low-resource networks.

The Simple LSTM served as a benchmark with which to
compare our Bidirectional and Stacked LSTMs. The train-
ing and prediction times, as well as the prediction accu-
racy served as a comparison with the more complex models.
Choosing a Simple LSTM to be the baseline predictor was
a decision made from the work discussed in Section 2, as it
was found that the Simple model had the least computational
complexity of the LSTMs developed and still outperformed
the prediction accuracy of other deep learning methods. For
these reasons, the Simple LSTM was chosen to be the base-
line predictor with which to compare the Bidirectional and
Stacked models.

All of the LSTMs trained and predicted using the same
training and test datasets, to ensure that they were being
compared as accurately as possible. They were developed
using Keras, and were a sequential model which means each
layer has one input and output Tensor. Their validation and
training loss function 𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝐸𝑟𝑟𝑜𝑟 . The Adam opti-
mizer was also used for all the models, a stochastic gradient
descent method which is suitable for network traffic predic-
tion where we are concerned with memory constraints and
have a large amount of data [15]. An activation function is
required between matrix multiplications to afford a neural
network, or in this case an LSTM the ability to model non-
linear processes. Internally, LSTMs have activation functions
built into them that occur within the cells, as can be seen in
Figure 1. Therefore, it was deemed unnecessary to add any
new activation functions.

During training, history of the training and validation loss
per epoch is stored and then plotted. This allows for the mod-
els to be evaluated on training and validation loss. Multiple
metrics, including𝑀𝐴𝐸,𝑀𝐴𝐸 and 𝑅2 were calculated at the
end of the training and prediction phases too, in order to
gain more insights into how the models were performing

during the process and to be able to conclude on the most
accurate model.

3.6 Hyper-Parameter Tuning
Using a validation set helps to determine how each model
will behave on data which it has not been trained on. When
the validation error reaches a minimum, this is when training
will be stopped, since the model has trained as well as it can
without starting to overfit to the training data. Continuing to
train the data may lead to decrease in training loss, however,
this would mean the data is not generalizing well, but rather
is fitting to the noise of the data [10]. In order to compare
the performance of the different models, they each needed
to be trained and evaluated with different hyper-parameter
in order to find the lowest possible validation loss. Once
found, the hyper-parameters that led to the model reaching
a minimum validation loss in training will be used to fit the
model. This model will then be used to make predictions.

Different dataset sizes allowed us to determine whether
more data increases accuracy and it’s effect on training and
prediction time. The inclination is that more data would in-
crease prediction accuracy, since the models have more data
to train on, but would also lead to an increase in training
and prediction times. Larger amounts of data would mean
outliers, traffic bursts in this case, would have less of an ef-
fect on the models, since their variation would be averaged
out more and should not reduce accuracy.

Epochs signify how many times the model cycles through
the full dataset. Increasing the number of epochs should then
help the model to generalise better to unseen test data during
the testing phase. However, too many epochs can cause the
model to start over fitting, fitting to the noise rather than
the underlying pattern of the data. The number of epochs
which lead to the lowest validation loss will be used.

Neurons represents the dimension of the output. They
are not independent, and communicate with each other. In-
creasing the number of neurons increases the number of
parameters that are passed onto the next LSTM cell, which
will increase computational complexity and should increase
accuracy.

4 Results
4.1 Optimum Parameters
Since the 𝑀𝑆𝐸 values were so small, the accuracy metrics
were also calculated for in terms of Root Mean Squared Error
(RMSE) in order to make the results more interpretable.
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Figure 2. Simple LSTM Training and Validation Loss

Table 1. Simple LSTM Validation Results

Epochs Neurons 𝑅2 𝑅𝑀𝑆𝐸

150 100 0.98 0.00632

The Simple LSTM reached a maximum validation 𝑅2 and
a minimum validation loss at 150 epochs and 100 neurons.

Figure 3. Bidirectional LSTM Training and Validation Loss

Table 2. Bidirectional LSTM Validation Results

Epochs Neurons 𝑅2 𝑅𝑀𝑆𝐸

150 50 0.98 0.00223

The Bidirectional LSTM reached a maximum validation 𝑅2

and a minimum validation loss at 150 epochs and 50 neurons.

Figure 4. Stacked LSTM Training and Validation Loss

Table 3. Stacked LSTM Validation Results

Epochs Neurons 𝑅2 𝑅𝑀𝑆𝐸

100 50 0.99 0.00948

The Stacked LSTM reached a maximum validation 𝑅2 and
a minimum validation loss at 100 epochs and 50 neurons.

4.2 Preliminary Analysis

Figure 5. Correlation Matrix of Input Features

Figure 5 above shows the correlation between input features
that were used. This was a useful step in order to visualise
the data, and understand what dependencies variables had.
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While not investigated here, removing variables with low
correlations may reduce computational complexity. Notable
correlations were between duration and packets, duration
and bytes and packets and bytes. Intuitively this makes sense,
since we expect a traffic flow to last longer if it contains more
packets or bytes. Bytes and packets also correlate, since more
bytes would require more packets to transport the load.

Figure 6. Total Traffic Flow vs Day of Week

Figure 7. Total Traffic Flow vs Holiday / University Term

In Figure 6, Friday and Tuesday have the highest amount
of network traffic. However, all of the days seem to have
similar amounts of total network traffic that they experience.
Additionally, there was 5% more network traffic observed
during the holiday than during a regular university time as
is seen in Figure 7.

4.3 Training and Prediction Time
The results in this section illustrate the effect of increasing
the dataset size on training and prediction time.

Figure 8. Dataset Size vs Training Time

Figure 8 illustrates how increasing the size of the training
set, by including more traffic flows, increases the training
times of all three LSTMmodels. The Simple and Bidirectional
LSTMs are fairly close in their training time which grows lin-
early, and are consistently quicker to train than the Stacked
LSTM. Furthermore, the Stacked LSTM training time grows
faster after 16000 traffic flows, taking over 8 minutes to train
on the largest dataset.

Figure 9. Dataset Size vs Prediction Time

Figure 9 illustrates the effect of increasing the dataset
size on the time taken for the models to make predictions.
The Stacked LSTM consistently takes the longest to make
predictions while the Bidirectional and Simple predictors
are almost indistinguishable in their prediction times for all
dataset sizes. When dealing with dataset sizes of this mag-
nitude, it appears the prediction times in practice would be
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Figure 10. Training Time vs Epochs

Figure 11. Dataset Size vs Training Accuracy

negligible.

In Figure 10, the training time for all three models is com-
pared with 50 and 100 neurons, with a dataset size of 48000
traffic flows. The Stacked LSTM consistently takes longer
to train than the Simple and Bidirectional models, which
is consistent with other results we have seen. Between 25
to 100 epochs, training time increases linearly for all of the
LSTMs. With more than 100 epochs, the Stacked LSTM with
100 neurons starts taking on order of magnitude minutes
longer to train than model with 50 neurons.

Lastly, it can be seen in Figure 11 that training loss (MSE)
tends to decrease with the dataset size. This was measured as
an average across 20-100 epochs at each dataset size. There
is a small uptick in training loss between 4000 and 8000 data
points, which will be discussed later on.

4.4 Prediction Accuracy
In order to evaluate the predictive accuracy of the Bidirec-
tional, Simple and Stacked LSTMs, they were each initially
trained using the following hyper-parameters which led to
the lowest validation loss, as seen in Tables 1, 2 and 3.

Table 4. LSTM Hyper-Parameters

LSTM Epochs Neurons

Bidirectional 150 50
Simple 150 100
Stacked 100 50
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Figure 12. Simple LSTM Predictions

Figure 13. Bidirectional LSTM Predictions
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Figure 14. Stacked LSTM Predictions
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Figures 12, 13 and 14 illustrate the predictions made by
each optimised LSTM, with hyper-parameters observed dur-
ing training. The predictions on the left and right are in-
verted, in order to more easily be able to visualise when the
models over or under predict.

The Simple LSTM captures 65 percent of the variance of
the data, as seen below in Table 5. It appears that the model
is over predicting, but has managed to capture the general
pattern of the time series data. In terms of the Bidirectional
LSTM, it less accurate in learning the characteristics of the
network traffic data, since it had the lowest 𝑅2 value. For
both the Simple and Bidirectional models, seeing a large
traffic burst at time step 8000 led to the models both mas-
sively over predicting for time step 𝑡𝑖+1. While the Stacked
model also suffered this over prediction, it was far less severe.

Model MAE MSE 𝑅2 Training (s)

Bidirectional 0.0078 0.00013 0.55 306.60
Simple 0.0063 0.00010 0.65 293.67
Stacked 0.0029 0.00006 0.80 591.20

Table 5. Model Performance Using Optimum Hyper-
Parameters - Test Set

The highlighted values in Table 5 illustrate the best result.
For prediction accuracy, the Stacked LSTM outperformed
the Simple and Bidirectional LSTMs respectively. It had the
lowest Mean Absolute and Squared Error, as well as the
highest 𝑅2 value. However, it also had the highest training
time, taking close to 2x longer to train than the Bidirectional
LSTM. The Simple LSTM had the lowest training time, and
mademore accurate predictions than the Bidirectional LSTM,
measured in both MAE and MSE. Additionally, it captured
more of the variance of the model with an 𝑅2 score of 0.65
compared to the Bidirectional 𝑅2 of 0.55.

5 Discussion
The first research question we aimed to answer was how
network traffic observed varies based on the day of the week
and with university holidays. The results showed that there
is little change in the traffic based on day, or whether is a
university term day. More data would be required to create
a strong argument as to why this is the case, however it is
possible that students and lecturers were indifferent with
when they interacted on the network. The high amount of
traffic during the holiday could also be explained by students
having deadlines during the holiday, or those who were tak-
ing the time to catch up work.

One of the reasons the Stacked LSTM has much higher
training times for all dataset sizes compared to the Simple

and Bidirectional LSTMs, taking 500 seconds to train with
100 epochs on 32000 traffic flows compared to 200 seconds
for the other models, is that the Stacked model has multiple
LSTM layers. This adds an overhead, since it is essentially
sequentially training Simple LSTMs. It is likely that increas-
ing the dataset size beyond 32000 traffic flows will continue
to increase the training time, inferring from the previous
result seen in Figure 8, and this is something that network
providers need to be cognisant of. The low prediction times
seen across all the models, stems from the fact that we are
essentially feeding an algorithm a set of values, and it is
applying a complex mathematical function that has already
been generated during training. However, inferring from the
trend seen in Figure 9, it is likely that the Stacked model will
consistently take the longest to make predictions. Datasets
of larger magnitudes could increase the gap in prediction
times between the Stacked and the other LSTMs as well.

Increasing the amount of data available to the LSTM mod-
els had the effect of increasing prediction accuracy. In a time
series approach, such as network traffic prediction, more
data means more historical knowledge that can be used to
infer future events. Additionally, more data means that the
models will see more fluctuations which it can add to its
understanding during training. This is what was observed
in figure 11, where the general pattern is that the training
and validation error decreased as more data was fed to the
models. However, it appears between 4000 and 8000 traffic
flows that training loss increased. One reason for this may
be that there was a large amount of burst flows during that
time, which caused the Mean Squared Error value to increase,
since it heavily punishes outliers due to its squared nature.
The initial high𝑀𝑆𝐸 values observed are again attributable
to the fact that with a small amount of data, outliers can
have a large impact on the error rate.

Changing the number of epochs the models trained on had
the effect of dropping the accuracy observed in the prediction
phase. it could have been caused by outliers that occurred
in the extra data since the model may have started to suffer
from over-fitting. This occurs when the model learns the
data too well, and starts to fit to the noise of the data, not the
underlying pattern. This is likely what happened in the case
of the bidirectional model, which had the lowest training
error by far compared with the simple and stacked models.
However, it produced the least accurate predictions on the
test set, indicating that it had suffered from over-fitting. This
can cause lower prediction accuracy in the test set. One way
to verify if this was the case would have been to create a
validation set as well, but this will be left for future work.

The Bidirectional model seemed to fit the training data
very well, and had the lowest validation loss of all the LSTM

11



models. One possible reason for this, is since information is
considered from both the past and the future, it may have
considered future flows which the other models were not
aware of yet. Compared to the Simple LSTM, it took slightly
longer to train, yet this did not translate to a more accurate
prediction. During the prediction phase, the Bidirectional
LSTM had a higher error rate, and a lower 𝑅2 compared to
the Simple LSTM. Since it is seeing data from the future as
well, the model is likely over-predicting fluctuations in the
network traffic which causes the decreased accuracy. The
results show that there is no benefit to using the Bidirec-
tional model for training and predicting network traffic on
the SANREN, as its complexity does not yield an improve-
ment in prediction accuracy compared to the Simple LSTM.

By default, the number of time steps the LSTM models
considered was one. This means that only one lagged obser-
vation is considered. Ideally, adding more time steps means
that the model would have more context, and would there-
fore provide a more accurate set of predictions. However,
when implementing time steps in the SANREN use case, the
predictions became far less accurate. A possible reason for
this decrease in accuracy is that the models miss out on sub-
tle time dependencies that are not considered as time steps
increase.

The Stacked LSTM model has the highest 𝑅2 prediction
value, 0.8, indicating that the model captures the most vari-
ance of all three models. It also had the lowest prediction
error, which shows that the model generalised the best to
new and unseen data, learning the overall pattern and not the
noise. Figure 14 also shows how close the observed and the
predicted values are. Since the Stacked LSTM has more lay-
ers of LSTM cells compared to the Bidirectional and Simple
models, it can learn and pass on dependencies better to the
next layer of the LSTM, further solidifying it’s understanding
of the data.

6 Limitations and Future Work
Due to the large volumes of traffic flows, predicting over long
time periods was difficult since it would require analysing
multiple gigabytes of data. A potential future fix is by clus-
tering the traffic flows into intervals, either hours or days
which would allow for easier predictions in the long term
since training is so expensive, especially in the case of the
Stacked. Another limitation was that the time-step parame-
ter which we unable to effectively implement. When the time
step was changed, it drastically increased training time and
the prediction accuracy dropped significantly. Ultimately, it
was removed from the code since it made running the models
extremely expensive and strained our resources. Changing
this may have helped with prediction accuracy since the
model could have additional context from previous observa-
tions. Removing some input features that do not impact the

prediction accuracy may also be useful, since it could reduce
the computational complexity of the models.

7 Conclusions
Traffic flow on the SANREN does not vary in any meaning-
ful way on holiday or regular university days. Additionally,
there was minimal change in the total traffic that flowed on
the SANREN on different days of the week.

The results show that the Stacked LSTM is the most accu-
rate method of future traffic prediction on the SANREN use
case. However, subject to network constraints, the Simple
LSTM is the best choice for a network provider, since it was
a least complex model in terms of training and prediction
time. The Stacked LSTM had an 𝑅2 of 0.8 compared to 0.65
and 0.55 of the Simple and Bidirectional LSTMs respectively.
Furthermore, the Stacked LSTM had the lowest prediction
𝑀𝐴𝐸 and𝑀𝑆𝐸. The Bidirectional LSTM is the least accurate
predictor, even though it was a more complex model, taking
longer to train and make predictions with compared to the
Simple LSTM. Therefore, it is not recommended in any situ-
ation to be used.

Prediction time was not impacted by dataset size in any
meaningful way, since the measurement was in millisec-
onds. However training time was consistently higher for the
Stacked LSTM compared to the other two models, for all
dataset sizes and number of epochs. An increase in dataset
size led to an increase in training and validation accuracy
for all three models.

If accuracy is most important without considering com-
putational complexity, then a Stacked LSTM will be chosen
since it has the lowest prediction error and highest 𝑅2. The
Simple LSTM will be a better choice if limited computational
resources are involved, since it has a 2x lower training time
and still makes more accurate predictions than the Bidirec-
tional LSTM.
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